MECHANICS (C) UNIT 1

TEST PAPER'8

Take $g = 9.8 \text{ ms}^{-2}$ and give all answers correct to 3 significant figures where necessary.

- 1. A golf ball and a table tennis ball are dropped together from the top of a building. The golf ball hits the ground after 1·7 seconds.
 - Calculate the height of the top of the building above the ground.

[3]

According to a simple model, the two balls hit the ground at the same time.

State why this may not be true in practice and describe a refinement to the model which could lead to a more realistic solution.

[2]

- A particle is in equilibrium under the action of three forces P, Q and R acting in the same horizontal plane. P has magnitude 9 N and acts on a bearing of 030°. Q has magnitude 12 N. and acts on a bearing of 225°. Find the magnitude and direction of R. [7]
- 3. A small ring, of mass m kg, can slide along a straight wire which is fixed at an angle of 45° to the horizontal as shown. The coefficient of friction between the ring and the wire is $\frac{2}{7}$.

The ring rests in equilibrium on the wire and is just prevented from sliding down the wire when a horizontal string is attached to it, as shown

Show that the tension in the string has magnitude $\frac{5mg}{9}$ N.

[7]

[3]

- 4. The velocity, $v \text{ ms}^{-1}$, of a particle at time t s is given by $v = 4t^2 9$.
 - (i) Find the acceleration of the particle when it is instantaneously at rest.
 - (ii) Find the distance travelled by the particle from time t = 0 until it comes to rest. [4]
- 5. Two model cars A and B have masses 200 g and k g respectively. They move towards each other in a straight line and collide directly when their speeds are 5 ms⁻¹ and 4 ms⁻¹ respectively. As a result the speed of A is reduced to 2 ms⁻¹, in the same direction as before. The direction of B's motion is reversed and its speed immediately after the impact is 5 ms⁻¹.
 - (i) Find the value of k.

[3]

The surface on which the cars move is rough, and B comes to rest 3 seconds after the impact. The coefficient of friction between both cars and the surface is μ .

(ii) Find the value of μ .

[3]

(iii) Find the distance travelled by A after the impact before it comes to rest.

[3]

MECHANICS 1 (C) TEST PAPER 8 Page 2

- 6. Two cyclists, Alice and Bobbie, travel from P to Q along a straight path. Alice starts from rest at P just as Bobbie passes her at 3.5 ms⁻¹. Bobbie continues at this speed while Alice accelerates at 0.2-ms⁻² for T seconds until she attains her maximum speed. At this moment both cyclists immediately start to slow down, with constant but different decelerations, and they come to rest at Q 80 seconds after Alice started moving.
 - (i) Sketch, on the same diagram, the velocity-time graphs for the two cyclists. [4]

By using the fact that both cyclists cover the same distance, find

(ii) the value of
$$T$$
, [4]

- (iii) the distance between P and Q, [2]
- (iv) the magnitude of Bobbie's deceleration. [2]
- 7. Two particles P and Q, of masses 2m and 3m respectively, are connected by a light string. Initially, P is at rest on a smooth horizontal table. The string passes over a small smooth pulley and Q rests on a rough plane inclined at an angle θ to the horizontal, where $\tan \theta = \frac{4}{3}$.

The coefficient of friction between Q and the inclined plane is $\frac{1}{6}$.

The system is released from rest with Q at a distance of 0.8 metres above a horizontal floor.

- (i) Show that the acceleration of P and Q is $\frac{2 \lg}{50}$, stating a modelling assumption which you must make to ensure that both particles have the same acceleration. [7]
- (ii) Find the speed with which Q hits the floor. [2]

After Q hits the floor and does not rebound, P moves a further 0.2 m until it hits the pulley.

(iii) Find the total time after the system is released before P hits the pulley. [4]

MECHANICS 1 (C) TEST PAPER 8: ANSWERS AND MARK SCHEME

1.
$$s = \frac{1}{2}gt^2 = \frac{1}{2} \times 9.8 \times 1.7^2 = 14.2 \text{ m}$$

M1 A1 A1

Lighter ball may be more affected by air resistance: include this

B1 B1

5

2. Total force to north =
$$9 \cos 30^{\circ} - 12 \cos 45^{\circ} = -0.691 \text{ N}$$

M1 A1

Total force to east =
$$9 \sin 30^\circ - 12 \sin 45^\circ = -3.985 \text{ N}$$

M1 A1

$$|\mathbf{R}| = \sqrt{(3.985^2 + 0.691^2)} = 4.04 \text{ N}$$
, on bearing tan⁻¹ 5.77 = 080·1°

M1 A1 A1

7

7

7

9

3. Resolve horizontally:
$$T + \frac{2}{7} \frac{R}{\sqrt{2}} = \frac{R}{\sqrt{2}}$$

$$T = \frac{5R}{7\sqrt{2}}$$

M1 A1

M1 A1

Resolve vertically:
$$mg = \frac{R}{\sqrt{2}} + \frac{2}{7} \frac{R}{\sqrt{2}} = \frac{9R}{7\sqrt{2}}$$
 $R = \frac{7\sqrt{2}}{9} mg$
 $T = \frac{5}{7\sqrt{2}} \times \frac{7\sqrt{2}}{9} mg = \frac{5mg}{9}$

M1 A1 A1

$$T = \frac{5}{7\sqrt{2}} \times \frac{7\sqrt{2}}{9} mg = \frac{5mg}{9}$$

4. (i) When
$$v = 0$$
, $4t^2 = 9$

$$t = 1.5$$

(i) When
$$v = 0$$
, $4t^2 = 9$ $t = 1.5$ $a = 8t = 12 \text{ ms}^{-2}$
(ii) $s = \int_{0}^{1.5} v \, dt = \left[\frac{4}{3}t^3 - 9t\right]_{0}^{1.5} = 4.5 - 13.5$, so distance = 9 m

M1 A1 A1 M1 M1 A1 A1

(ii)
$$v = u + at$$
: $0 = 5 + 3a$

$$\frac{5}{2}$$
 $u\alpha = \frac{5}{2}$ $u = 0.170$

M1 A1 A1 M1 A1 A1

(i)
$$200 \times 5 - 4k = 200 \times 2 + 5k$$
 $9k = 600$ $k = 66\frac{2}{3}$
(ii) $v = u + at$: $0 = 5 + 3a$ $a = -\frac{5}{3}$ $\mu g = \frac{5}{3}$ $\mu = 0.170$
(iii) $v^2 = u^2 + 2as$: $0 = 4 + 2(-\frac{5}{3})s$ $s = 1.2$ m

$$s = 1.2 \text{ m}$$

B2 B2

(ii) Areas under graphs equal:
$$40(0.2T) = 1.75(T + 80)$$

M1 A1 A1

$$6.25T = 140$$

$$T = 22.4$$

Α1

Β1

(iii) Area =
$$8T$$
, so distance = 179.2 m

M1 A1

(iv)
$$3.5 \div (80 - T) = 0.0608 \text{ ms}^{-2}$$

M1 A1

12

13

$$F = ma$$
: $T = 2ma$, $3mg \sin \theta - \frac{1}{6}(3mg \cos \theta) - T = 3ma$

M1 A1 A1

Add:
$$3mg(0.8) - 0.5mg(0.6) = 5ma$$
 $5a = 2.1g$ $a = \frac{21g}{50}$

M1 A1 A1

(ii) Dist. = 1 m :
$$v^2 = 2(\frac{21g}{50})(1)$$

 $v = 2.87 \text{ ms}^{-1}$

M1 A1

(iii) Time for Q to reach floor is t where
$$1 = 0.21gt^2$$
 $t = 0.697$ s 0.2 m at 2.87 ms⁻¹ takes 0.0697 s, so total time = 0.767 s

M1 A1 M1 A1